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SUMMARY 
A finite element method is developed to solve the partial differential equations describing the unsteady flow of 
gas in pipelines. Excellent agreement is obtained between simulated results and experimental data from a full- 
scale gas pipeline. The method is used to describe very transient flow (blowout), and to determine the 
performance of leak detection systems, and proves to be very stable and reliable. 
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INTRODUCTION 

Transient flow of gas is an important aspect in the design and operation of pipelines. Gas is a 
compressible fluid which often exhibits time-varying profiles of flow and pressure in a pipeline. 
When a steady pattern of flow in a pipeline is disturbed by changing of the flow at either end, a 
pressure wave is formed which travels away from the source of disturbance. The transient 
behaviour described above must be properly dealt with if a pipeline system is to be designed and 
operated effectively. 

Transient gas flow in pipelines has been investigated by several authors. Osiadacz'** has used a 
finite difference method for solving a linear model, in which he neglects the inertia forces. 
Wiemann3 has used another method in which, after some simplifications, he solves a set of ordinary 
differential equations by an Euler method. 

In this paper we have used a finite element method combined with an implicit Euler method 
without making any simplifications of the governing equations. 

MATHEMATICAL MODEL 

The motion of a continuum is governed by a set of field equations which are common to all 
continua, and by constitutive equations which identify the intrinsic nature of the continuum. 

The law of conservation of mass states that the mass of a volume moving with the gas remains 
unchanged. It can be written in the form 

ab -+ at v-pv = 0, 
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often referred to as the Eulerian continuity equation, where p is the specific density and V is the 
velocity. 

The principle of conservation of momentum expresses that at any instant the rate of change of 
momentum of a volume moving with the gas is equal to the sum of surface forces and volume forces 
acting on the volume. The mathematical formulation of the above principle can be written as 

a 
-(BV)= - [ v . p v v ] - V P - V . r + p g ,  
at 

known as the momentum equation. Where the term a($V)/at is the rate of increase of momentum 
per unit volume, - [V. pVV] is the rate of momentum gain by convection per unit volume, - V P  is 
the pressure force per unit volume, - V. z is the rate of momentum gain by viscous transfer per unit 
volume and pg is the gravitational force on the element per unit volume. 

Equations for compressible gas flow in pipelines 

to reduce the equations (1) and (2 )  in the following way. The continuity equation becomes 
To obtain a mathematical model for one-dimensional gas flow in a rectilinear pipe, it is necessary 

a p  ,au ag 
- + p-+ u- = 0, 
a t  ax ax (3)  

where the velocity u is the average velocity over the cross-section of the pipeline and p is the specific 
density of the gas. 

The momentum equation becomes 

au aU a p  2fpulul a 2 0  

at ax ax D a x 2  
p -  + pu- + -- &sin 8 + ____ - p- = 0, (4) 

where the viscous forces have been approximated by the term 

2j-pulul a Z u  
~- 

D 'LdX2 
Replacing Newton's law of viscosity by an empirical constitutive equation, which is only valid for 
flow in pipes. D is the pipe diameter and p is the dynamic viscosity of the gas. 

The friction factor f is calculated by the explicit equation 

0'2698(K/D) - ~ 0.3539(K/D) 1,1098 + Re0,8981 5.8506 )] ( 5 )  
Re 

1 

proposed by C h e r ~ , ~  which is valid over the parameter ranges 

4000 d Re d 4 x lo8, 

5 x lo- '  Q (KID)  d 0.05. 

Re is the Reynolds number and K is the roughness of the pipe. 
The gravitational force is p g  sine, where g is the acceleration due to gravity and 8 is the angle of 

pipeline inclination with respect to the horizontal plane. The pressure force per unit volume is given 
by d P / a x ,  where P is the gas pressure averaged over the cross-section of the pipeline. 

By using the chain rule for the term aP/ax and introducing the molar density p, one can 
rearrange equations (3 )  and (4) as 
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c?p au a p  -+ p-+ u - = o  
at ax  ax 

and 

aU au  I ( a p a p  a P a T )  . 2fpuiUi  p a 2 u  p- + pu- + - -- + -- - pgsin0 + ~ - -- 
at ax M a p a x  aTax D M a x 2  =” 

(7) 

Finally, an equation of state is required to complete the description of compressible flow. The ideal 
gas law states 

where Z is the supercompressibility factor, R is the universal gas constant and T is the absolute 
temperature of the gas. The two derivatives aP/ap and aPld7; are easily obtained from 
equation (8), but any equation of state from which it is possible to find the two derivatives 
aP/ap and a P p T  could be introduced. 

The pipe is regarded as an isolated system without energy exchange with the surroundings. 
Thus, the law of conservation of energy has not been included in the mathematical model. The 
gas flow is assumed isothermal, and thus the derivative aT/ax in equation (7)  is equal to zero. 

Initial and boundary conditions 

‘initial value boundary problem’. 

done by solving the stationary problem, in which the derivatives of time are omitted: 

The two partial differential equations (6)  and (7) form a set of equations which are known as an 

To solve the equations in the time domain, it is necessary to define the initial conditions. This is 

au ap 
ax ax p-+u-=o (9) 

and 

After solving these equations in the space domain, the initial conditions along the pipe is defined; 
then the solution in the time domain can be found by integrating the equations (6)  and (7), modified 
by the side boundary conditions. 

NUMERICAL METHOD 

The basis of the finite element method is the representation of a continuum by an assemblage of 
sub-divisions called finite elements. The elements are considered interconnected at joints called 
nodes. The variables in the differential equations are expressed as a linear combination of 
appropriately selected interpolation functions. Using a weighted residual method the differential 
equations are transformed into algebraic equations governing each element. These equations are 
finally assembled to form a global system of algebraic equations for the overall discretized 
continuum. With proper boundary and initial conditions imposed, solution of these equations will 
yield the approximate values of the variables at the nodal points. 
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Interpolation functions 

The finite element interpolation functions are characterized by the geometry of the elements, the 
number of nodes, the choice of specified variables of the nodes and finally the choice of 
interpolation functions. 

A one-dimensional straight line element with two nodes has been chosen to represent flow in 
pipelines. 

Regardless of the geometrical shape, a finite element may be grouped into a Lagrange or a 
Hermite category. In contrast to the Lagrange family of elements the Hermite category includes 
derivatives of the variable as well as its values defined at the nodes. 

The first derivative of density and the first and second derivatives of velocity are included here, as 
the gas flow model is also intended as a system for detection of leaks in pipelines (Figure 1). As 
shown in the next section small leaks are more easily recognized from derivatives of specified 
variables than from the variables themselves. 

The following polynomial expansions have been used as interpolation functions for an 
approximate determination of velocity and density, respectively: 

0 = u l x 5  + b1x4  + c1x3 + dlx2 + e , x  + f l ,  (1 1) 

A = a2x3  + b2x2  + c2x  + d , .  (12) 

Higher-order polynomials are required since derivatives must be specified at the nodes in addition 
to the variable itself. Continuity of the variable and the derivatives at the endpoints of the 
element determines the coefficients. 

Finite element formulations of governing equations 

A Galerkin finite element method is used to discretize the equations (6) and (7): 

[$ + pax + vax A,dx = 0 
av " 1  

and 

(14) 
av aU 1 apap 
at ax M a p a x  

p- + up- + --- - pgsin8 + 

where p and v are dependent variables and L is the length of the pipe. We choose to use index 
notation instead of matrix notation and the indices used are defined as a,P = 1,2,3,4 and 

The interpolation function for the density, An, is used as a trial function for the continuity 
equation, and the interpolation function for the velocity, QN is used as a trial function for the 
momentum equation, following the discussion on the choice of trial functions given in Reference 5, 
p. 266. 

N , M , R =  1,2,3,4,5,6. 

a - -  3 v  3 %  a 9  6 v  a 2 v  
,dx. v .bx ,T7  p , a x .  v I b x  1 b x 2  

1 
- 1  1 

Figure I .  One-dimensional element and the variables specified at the two nodes 
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The density is approximated by 

and the velocity is approximated by 
6 

v = 1 viai. 
i =  1 

Equation (13) can be written as 

where 

and equation (14) can be written as 

where 

The integrals, except F N p  ( [aP/ap] ) ,  are independent of time and space when the element geometry 
is defined, and they can be calculated at the start of the computer calculation and used throughout 
the whole calculation. It is necessary to calculate F,, ( [aP/ap ] )  for each element at all time steps, 
since aPfap is a function of both time and space. Gauss quadrature is used for the integration where 
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the order of the Gauss quadrature is adjusted to the order of the polynomial following the rules 
given in Reference 5, p. 202. 

First, a third-order Runge-Kutta method was used for the time integration: 

. At 
Y ' + ~ - Y ~ = ~ ( K ,  + 4 K 2 + K 3 ) ,  

K ,  =f(x',y'), 

K 2 =  f ( x ' + ) A t , y ' + $ A t K , ) ,  

K , =  f ( x ' + A t , y i - A t K 1  + 2 A t K 2 ) ,  

but this method was not stable for the time integration. It was impossible to maintain a steady-state 
situation. The reason for the instability was not discovered. A possible explanation could be that 
the Runge-Kutta method is not stable because the differential equations are non-linear. A fully 
implicit Euler integration method was tried instead: 

(19) y i + l  - y i = A t f i + l .  

This method was used without any stability problems. The resulting non-linear system was solved 
by the Newton-Raphson method. 

In each iteration it is necessary to solve a set of linear equations. The matrix is sparse with a 
bandwidth of ten. A standard subroutine for profile equation-solving, called UACTCL,6 was used 
for solution of the linear equations. 

SIMULATION OF TRANSIENT GAS FLOW IN PIPELINES 

Comparison of full-scale measurements and calculation 

A comparison of full-scale measurements and corresponding finite element calculations has been 
made. The results are given below. 

Full-scale measurements were carried out in 1979 on a 77.33 km gas pipeline from Neustadt 
through Sorzen to Unterfohring in Germany (Figure 2). The measurements are described in 
Reference 7. Pressure, temperature and flow were measured in Neustadt and Unterfohring, while 
pressure and temperature were recorded in Sorzen. The measurements were taken simultaneously 
every fifth minute from 9.00 a.m. to 2.30 p.m. during very transient flow conditions. 

The pipeline was closed at Unterfohring at 9.00a.m. while the volume flow at Neustadt was 
kept constant. At 11.00 a.m. the pressure at Neustadt had increased from 7.2 bar to 9.5 bar, close to 
the maximum permissible pressure. The pipeline was opened again at Unterfohring and the 
pressure decreased, until normal flow conditions were re-established. 

The thermodynamic data and the dynamic viscosity of the gas are given in Table I. 
The pressure and the volume flow measured at Neustadt and Unterfohring, respectively, have 

been used as boundary conditions for the simulation (Figures 3 and 4).  
Before the transient calculation was carried out, the roughness of the pipe wall was adjusted, 

until the measured and calculated parameters for stationary flow were identical. The roughness for 
the pipe sections Neustadt-Sorzen and Sorzen-Unterfohring thus became 0 3  mm and 0.05 mm. 

The finite element model consisted of 21 elements, and the calculations were carried out with a 
time step length of 300s. 

The measured and the calculated pressure variations at Sorzen and Unterfohring are compared 
in Figure 5. Results for every 15 min have been plotted. The mean and the maximum discrepancy 
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UNTERFOHRING NEUSTADT SORZEN 

, -  > 

dlmml  390.6 3L0.2 3 LO, 2 

I l kmJ  L.6L 32.12 LO. 57 

Figure 2. Pipeline from Neustadt through Sorzen to Unterfohring with specification of inner diameter and pipe length 

Table I. Thermodynamic data and the dynamic viscosity of the gas 

Temperature (K) 286 
Compressibility factor 0.98 
Molar weight (kg/mole) 1.65 x lo-’ 
Dynamic viscosity (Pas) 9.84 x 

PRESSURE (BAR1 

, TIME (HOURS) 
9 10 1 1  12 13 1L 

Figure 3. Pressure boundary conditions at Neustadt 

between the measured and calculated pressure values are 0.04 bar and 0.09 bar, respectively, and 
the error of the pressure measurements is smaller than 0.04 bar.? 

Leak detection 

Pipeline simulation models can be used to identify leakages. The predictions from the simulator 
are compared with measurements from the pipeline. If there is discrepancy between the measured 
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Figure 4. Volume flow boundary conditions at Unterfohring 

and predicted values, a leak may exist if the discrepancy is above a certain threshold value. The 
threshold value is determined by the error of measurements and the error of prediction, and is 
normally for a practical implementation determined by experiments in which an artificial leak 
is created. 

A leakage in the pipeline from Neustadt to Unterfohring has been simulated (Figure 6) in order 
to determine the performance of a leak detection system for a low pressure pipeline. 

The normal steady flow conditions (Table 11) were changed by decreasing the pressure by 0.02 
bar at a position 4.76 km from Sorzen. The pressure drop corresponds to a sudden decrease in the 
mass flow of approximately 12 per cent. The volume flow at Unterfohring was kept constant during 
the simulation. 

The effect of the sudden change of the steady state is given in Table 111. Velocity and pressure 
variations have been calculated for a position along the pipeline corresponding to Sorzen. The 
variations are given as percentages of the steady-state values. 

It appears that the velocity and pressure gradients were much more sensitive to the change of 
state than the main variables. The maximum decreases in velocity and pressure were approxi- 
mately 3 per cent and 0.3 per cent, respectively, at a position 4760m from the leakage. 

The results give an indication of the necessary accuracy of the flow and pressure measurements. 

Simulation of outflow from a rupture 

In this example the results of a simulation of outflow from a rupture on a horizontal high 
pressure pipeline are described. The outflow of gas into the atmosphere has been calculated until a 
new steady-state condition occurs. 

The pipeline is in contact with a gas reservoir at one end. The rupture occurs 2048 m from the 
reservoir (Figure 7). The fluid is assumed to behave like an ideal gas with constant specific heat 
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Figure 5 .  Comparison of measured and calculated pressure variations at Unterfohring and Sorzen. Calculated data are 
indicated by ( x ) and the experimental data are indicated by straight lines 
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NEUSTAOT LEAKAGE SORZEN UNTERFOHRING 
1 +. - .--+ 
1 

I l km l  32.00 L. 76 L0.57 

Figure 6. The effect of a leakage in a low pressure pipeline has been determined 

RESERVOIR RUPTURE 

-e *d 

d l m m l  62.0 

I l k m l  2.0L8 

Figure 7. High pressure pipeline from the reservoir to the rupture with specification of inner diameter and length 

Table 11. Steady-state conditions at Sorzen before leakage: v is velocity, M is 
massflow and P is pressure 

Table 111. Velocity and pressure variations at Sorzen after leakage. The variations are given as 
percentages of the steady-state values 

Time after 

10 
20 
30 
40 
50 
60 

120 
180 
240 
300 

98.654 
99.157 
96.482 
96466 
96.497 
96.954 
97.861 
98.28 1 
98.536 
98.712 

273.0 
354.4 
305.1 
231.1 
181.7 
153.2 
114.3 
106.0 
102.9 
101.3 

98.623 
97.082 
96.371 
96332 
96.547 
96.793 
97.668 
98.073 
98.3 18 
98.488 

99.968 
99.922 
99.885 
99.861 
99.846 
99.835 
99.802 
99.788 
99.779 
99.773 

96.2 
93.2 
92.7 
93.2 
93.9 
94.4 
95.9 
96.6 
97.1 
97.4 
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Table IV. Thermodynamic data and the dynamic viscosity of the gas 

Temperature (K) 286 
Compressibility factor 0.75 
Molar weight (kg/mole) 1.82 x lo-' 
Dynamic viscosity (Pas) 2.2 10-5 

flowing through a convergent nozzle. Thus the magnitude of the velocity of the gas at the exit 
is equal to the local speed of sound as long as the pressure at  the exit, P,, exceeds the pressure 
of the surroundings, PB, as given in the following equation from Reference 8: 

With the specific heat ratio, y, equal to 1.28, equation (20) becomes P, > 1.82PB. 
During normal steady-state conditions the pressure at the inlet of the pipe is 80 bar and the 

velocity of the gas at a position corresponding to the rupture is 5.8 m/s. 
In the calculations it is assumed that the outflow velocity has attained the local velocity of sound 

one second after the rupture has occurred. As the pressure of the exit is greater than 1.82 times the 
atmospheric pressure, the outflow velocity is kept equal to the velocity of sound during the rest of 
the simulation. 

The thermodynamic data and the dynamic viscosity of the gas are given in Table IV. 
The calculations have been carried out with 21 elements and a time step length of 0.5 s. 
The outflow at the rupture is depicted in Figure 8 from the moment the rupture occurs to when a 

new steady-state condition appears. 

CONCLUSIONS 

A finite element method for the simulation of gas flow in pipelines has been formulated. The 
method is an alternative to existing finite difference methods. 

Results from the computer program have successfully been compared with actual process data 
from a full-scale pipeline. 

The method has been used to determine the performance of leak detection systems for natural 
gas pipelines. 
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NOTATIONS 

D Diameter of the pipe 
f Friction factor 
9 Acceleration due to gravity 
M Molar weight 
P Static pressure or negative component of the stress normal to the surface 
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STEADY STATE 

, TIME ( 5 1  
0.5 1.0 1.5 2.0 2.5 3.0 3,5 4.0 L.S 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 

PRESSURE l 8 A R  1 

TIME Is1  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 

Figure 8. Simulation of outflow from a rupture in a high pressure gas pipeline. The pressure at  the position of the rupture is 
depicted in the lower diagram. During the whole simulation the outlow pressure is greater than 1.82 times the pressure of the 

surroundings. The flow is thus sonic at the rupture 
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R 
Re 
t 
V 
u 
X 

8 
P 
P 
B 

V 
z 

Gas constant 
Reynolds number 
Time 
Velocity, a vector point function 
Average velocity of the gas 
Distance co-ordinate 
Angle of pipeline inclination with respect to the horizontal plane 
Dynamic viscosity 
Molar density of the gas 
Specific density of the gas 
Viscous stress tensor 
Divergence operator 
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